BECAUSE TERMINOLOGY MATTERS +1 (203) 431-2530

75 Sgt William B Terry Dr, Suite 2005, Hingham, MA 02043 www.APELON.com
T m —IO Z www.ApelonDTS.org

Editor Module

DTS 4
Guide

DTS 4: Editor Module Guide

Table of Contents

AN g 8 0o 81 A o] o SRRSO 4
B. FramewWOrK OVEIVIEWcccciiiiiiie ettt e e nnee s 5
C. Editor Configuration...........cccccieiieiiiiie s 6
D. DTS EdItOr LAYOULScooviiieciiecie ettt 7
D.1 Layout XML File — LayOUL TaQ.....c.cciueiieriieiieiieeiie et sra e sne e 7
DA AV o] U] T U I T RSP PPRP 8
(DR oo = =T 1= To TSP PTOPPPRPRRY 8
D.4 PaNEILAYOUL TAQ .viivveireiirieiieiiiesieesieesieesiee e e steesiestesaessaeseesseessaesseesseesseesseesseenseesens 9
DR =1 T I I U TP POPPPRPRRY 9
D.6 TADPANET TAQ ..viiiiiiiiiece e e e e 10

D Y[o= Vg =] I I o SR SSURTRN 10
T I Y010 | 8 =T [(o] USSP 13
E.L EQITOr OVEIVIBW ...ttt bbbttt 13
N N (o @ o1 o] S I o SRRSO 14
E.3The Menu Bar Tahc.ooiii e 15
E.4 The TOOI Bar Tabcoouiiiiiec e 17
E.5 The LAYOUL TaD ..c..ooiiiiiiiee e 19
E.5.1 The Panel EIBMENT ..o 20
E.5.2 The TabPanel EIEMENT...........coiiieeee e 22
E.5.3 The MultiPanel EIEBMENTcooiieeie e 24

E.6 LayOUut EQITOr IMIBNUS.......oouiiiiiiiieeie s 25
F. MOAUIE EVENTS.....c.ooi e 27
FLL DS .ttt et a et te et enrenreenes 27
FL2 EVENT TYPES ..ot 27
F.3 EVENE PrOCESSING ... cueiuieitiitieieite sttt sttt bbbt 28
F.4 Programmatic Setting OF 1IDS.......cccvoiiiiiieiec e 29
G. INternatioNaliZatioNccooeiieieiieie e 31
H. EXample MOAUIEc..ooiii it 32
H.1 MOdule RegISTIAtION.c.iiiieieitiiiee e 32

(o 02 101 0o PSPPSR 33

© 2023 Apelon, Inc. Hingham Massachusetts

DTS 4: Editor Module Guide

H.3 Class DECIAIALIONcoiiiieiiiiiiiieie et enes 34
H.4 Initializing the MOAUIE..........ccooii e 35
H.5 Getting Module Menu and Toolbar ItemSccccovevieiieiieieeeeeee e 37
H.6 Getting Plug-in Menus, Menu Items and Toolbar Itemscccceveeveevieieecinennn 39
H.6.1 Setting PIug-in COMPONENTScciiiiiiiiiiiiieeee e 40

H.7 Handling Connection EVENLScccciiiiiiieiic e 41
H.8 INItialization SUMMAIYcooiiiiiie et 41
H.9 Creating a Panel for the Modulecccoveiiiiiciic e 41
H.10 DTSMonitor FUNCHONAIILY.........ccoviiiiieiic e 42
H.10.1 Connection Event FUNCHIONAITYcccouiiiiiiiieeseeeeee e 45
H.10.2 Module Event FUNCHIONAIILYccooiiiiiiiiieiic e 46
H.10.3 Data Change Event FUNCHIONALILYccccovviiiiiiiece e 47
H.11 Drop FUNCHIONAIITYeeeieiiece e 49
H.12 Showing Drop DEtailS.........ccviiiiiiiiiiieiie e 50
H.L3 Error HaNGIING ..oovveieiiecece sttt 51
H.14 Configuration Managementcccueiiueiiiriieiie e se e ae e 52

I. Converting Plug-in MOUIES...........cccooiiiiiiiecec e 54
1.1 Converting @ Pre-V4 PIUG-INooiiiiiiiieee e 54
1.2 CONVEITING 10 V4.3 ...ttt et et e st e s e e snaeennee e 54
J. Appendix A — DTS Editor Modules.........c..coeeiiiiiieiiciie e 55
K. Appendix B — Standard DTS Editor Layout File............ccccoooviiviiieincinen, 60

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 3

DTS 4: Editor Module Guide

A. Introduction

The DTS Editor Plug-in Framework was introduced in DTS Version 3.4 to provide a
mechanism for extending the capabilities of the DTS Editor. Using the Plug-in Framework,
developers were able to create new plug-in modules designed to interface and work with
existing DTS Editor features. This enabled the DTS developer to create targeted, custom
functionality without having to spend time and effort developing a GUI architecture and re-
creating standard DTS Editor features such as connection handling and drag-and-drop (DnD).

With DTS Version 4, the Plug-in Framework has been extended to a DTS Editor Module
Framework that provides additional capabilities and permits complete customization of the DTS
Editor layout. In essence, the DTS Editor is no longer an extensible application, but a
customizable platform for the delivery of DTS user functionality. The “classic” DTS Editor is
still available as one example of an Editor implementation.

The DTS Editor Module Framework is backwards-compatible with the Plug-in Framework: pre-
V4 Editor plug-ins run unmodified in the default DTS Editor configuration, and can be easily
“upgraded” to full Module status with the addition of few new methods in their base class.

This Guide provides a comprehensive explanation of the DTS Editor Module Framework,
including a description of DTS Editor Layouts and the interactive Layout Editor. An example of
custom Module development is given and the catalog of available standard DTS Modules is
provided. The Guide is written for developers and architects who would like to implement
custom functionality in their DTS environments. A basic understanding of Java programming is
assumed.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 4

DTS 4: Editor Module Guide

B. Framework Overview

In the DTS Editor Module Framework, functionality is delivered via discrete components called
Modules. Modules encapsulate a set of features (menu items, toolbar items, GUI panels and
executable classes) that perform related tasks. Examples of Modules from the classic DTS Editor
implementation are the Search Panel and the Property Editor Panel. Using aspects of the Module
Architecture such as the DTS Editor Configuration File and DTS Editor Layout File (described
in succeeding sections), Modules can be selected, functionality tailored, and GUIs designed to
meet specific user requirements. Appendix A — DTS Editor Modules is a catalog of all standard
DTS Editor Modules annotated with details on Module menu and toolbar items, event
processing, DnD support, and configuration options.

One of the strengths of the Module Architecture is its ability to support the creation and
integration of custom, user-developed, DTS Editor Modules. Thus the default Editor structure
can be augmented, or even replaced, with unique features and functions. A new DTS Editor
Module (or plug-in) is created by writing a base Module class that extends the
DTSEditorModule class and placing this class (and any related Module classes) into a “jar”
package. On DTS Editor start-up, designated folders are scanned for these Module packages and
identified Modules are registered for potential use. Once registered, the Module can be used as
part of an Editor layout (see DTS Editor Layouts below) or “plugged-in” to the default layout.

When the Editor determines that a Module is to be used, it invokes specific methods (defined in
the DTSEditorModule class) to initialize the module, create custom menu and toolbar items,
etc. The DTSEditorModule class (and its associated DTSEditorModuleMgr class)
provide methods for defining Modules, exposing functionality (like displaying panels) and
accessing DTS Editor services including drag and drop support for DTS data objects such as
Concepts, Properties, Terms, etc., connection and event detection, and error (exception)
processing. Further details on Module Framework support classes are provided in the Example
Module section below.

The following sections provide details on specific aspects of the Module Architecture and an
example of Module development.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 5

DTS 4: Editor Module Guide

C. Editor Configuration

When the DTS Editor is invoked, it reads a configuration (Java Properties) file that defines
local Editor attributes such as default connection parameters and preferred behaviors, such as
whether clicking on a Namespace or Concept in the Tree Panel automatically loads the Details
Panel with the Concept (a.k.a., “Click to Edit”).

Since most Editor behaviors are set by user selections in the various panels, it is unlikely that you
will need to manually modify configuration values, but there are two configuration parameters
that should be understood:

Key Value
If “true”, the DTS Editor performs an automatic Connect action

toC . . .
auroront when opening. Default value is “false”. This parameter can be
also set by the Connect Parameters panel.
fitle If non-empty, the string placed in the Title Bar of the

application. This value overrides the normal value of the
DTSEditor.Title resource file entry (see the
Internationalization section below for further information on
the internationalization resource file). The default value for
titleis‘”.

The default configuration file for the DTS Editor is:

bin\editor\dtseditor.xml

in the DTS installation directory. A different configuration file can be specified, however, by
providing another argument to the run2pp command in the invoking command line. Thus:

C:\Program Files\Apelon\DTS 4.3\bin\runApp.bat
com.apelon.apps.dts.editor.DTSEditorApp -config:MyConfig.xml

will start the Editor using the MyConfig.xml file (in the bin\editor folder). It is unlikely
that a different configuration file will be needed, but if it is, the custom file should be created by
first opening the default file and then saving the file under a different name.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 6

DTS 4: Editor Module Guide

D. DTS Editor Layouts

The visual structure of the DTS Editor application, i.e., the items in the Menu Bar, the icons in
the Tool Bar and the panels visible in the main Editor window, is called the Editor’s Layout.
Prior to DTS Version 4.3, Layout definitions were stored in XML files on the client and linked
from the DTS Editor configuration file. Since 4.3, Layout definitions are maintained on the DTS
server and users can interactively select desired Layouts, and design their own Layouts using a
GUI-based designer, all directly from the DTS Editor. Management of Layouts is similar to that
of Namespace and Subset Profiles (see the DTS Editor Users Guide for information on
Profiles). Layout definitions can also be exchanged via Layout XML files, compatible with those
used prior to DTS 4.3.

The remainder of this section describes the elements of a Layout definition using the XML
exchange file format. The following section will explain how to design and maintain Layout
definitions interactively using the Layout Editor GUI.

D.1 Layout XML File - Layout Tag

A Layout XML file specifies the contents and structure of a DTS Editor instance: its menu bar,
tool bar and panels. Elements in the Layout also control whether plug-in Modules are allowed
and how Modules interact. Layout files can be created using a text or xml editor, or can be
written from an existing Layout using the Export option in the Layout Editor.

The format of the Layout file is defined by dtslayout . xsd which can be found in the
bin\editor folder of the DTS installation directory. The default DTS Editor Layout file,
dtslayout.xml, isshown in Appendix B — Standard DTS Editor Layout File. Note that the
provided dtslayout.xml is for descriptive purposes only; it is not used by the DTS Editor. A
read-only, internal representation of the default Layout is kept. The file can be imported into the
Layout Editor, however, to “seed” new Layouts.

The top level element of a Layout is the Layout tag. This tag wraps the rest of the Layout
elements and can contain four attributes. Here is an example of the Layout tag from the default
Layout:

<Layout Description=" Apelon Standard Layout" EnablePlugins="true" >
The first attribute is Description. This optional attribute is a text description of the Layout.

The next attribute is the optional EnablePlugins attribute. When the value of this attribute is
“true”, any registered Modules that are not explicitly named in the Layout are considered plug-
ins and are automatically added to the Layout at layout build-time according to the values
returned by the plug-in methods from the base Module class. If this attribute is absent, or its
value is “false”, only those Modules explicitly identified in the Layout will be made a part of the
application. This attribute is set to “true” in the default DTS Editor Layout for backwards
compatibility, but when a custom Layout has been defined, it is usually appropriate to not
include the EnablePlugins attribute so that the Layout components can be completely
specified.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 7

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

Two other optional attributes are available for the Layout tag: width and Height. These
elements declare the width and height (in pixels) of the Editor frame. If the width and height are
not explicitly provided, the frame is built using a default width of 1024 and default height of 768
respectively. In either case, the realized width and height are subject to available screen size.

The three element tags under the Layout tag are MenuBar, ToolBar and PanelLayout.

D.2 MenuBar Tag

The MenuBar tag specifies the contents of the application’s menu bar. As seen in the fragment
below:

<MenuBar>
<Menu Command="file" Mnemonic="f" Name="File">
<SelectItem ModuleName="DTSConnect"/>
<Separator/>
<SelectItem ModuleName="DTSExit"/>
</Menu>

</MenuBar>

a MenuBar IS made up of a sequence of Menu tags, each corresponding to a Java JMenu.
Attributes in the Menu tag specify the internal action command (Command), menu mnemonic
(Mnemonic) and visible menu name (Name). Within each Menu tag is a list of selectItem
elements corresponding to the specific selectable items in the menu. In addition to SelectItem,
the separator element is available to draw an item separator in the menu.

The only required attribute in the selectItem tag is the name of the Module invoked when the
item is selected. The selectItem tag does support two other, optional, attributes, options and
Tip. The options attribute value is a formatted string that will be passed to invoked Modules
to modify Module layout and/or behavior. options is described in more detail in the Panel Tag
section below. The value of the T1ip attribute is a ToolTip text string that can be associated with
the item. The value overrides any default ToolTip provided by the Module.

A Module can expose multiple menu items when it is loaded (see Appendix A — DTS Editor
Modules for examples). Note that the display name of the menu item(s) is accessed at build-time
from the Module’s base class.

D.3 ToolBar Tag

The Too1Bar element has similar functionality for creation of the application’s toolbar. Using
the example below:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 8

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

<ToolBar>
<SelectItem ModuleName="DTSConnect"/>
<Separator/>
<SelectItem ModuleName="DTSTree"/>
<SelectItem ModuleName="DTSSearch"/>

<Toolbar>

the Too1Bar tag defines the set of Modules that are shown (via icons accessed from the
Module’s base class) in the toolbar. The ModuleName attribute is required in each SelectItem
tag, while the options and Tip attributes are optional. As with the Menu tag, multiple icons
can be exposed by the Module and the separator element is available.

D.4 PanelLayout Tag

The most interesting portion of the Layout definition is the PanelLayout tag. PanelLayout
implements a very flexible “language” for describing the structure of Module panels in the main
window. A panelLayout element contains one of the following elements:

e Panel —asingle Module panel

e TabPanel —atabbed panel, i.e., Java JTabbedPane, consisting of multiple panels,
selectable by clicking on a tab label

e MultiPanel —acompound panel consisting of a set of panels organized sequentially
either horizontally or vertically

D.5 Panel Tag

The Panel element typically consists of simply the name of its associated Module:

<Panel ModuleName="DTSStatus"/>

The panel tag also supports the optional 0ptions, 11D and TargetI1D attributes. The 11D
and TargetI1D attributes are described later in the Module Events section of this document.
The options attribute is a formatted string that can be passed to Modules to modify Module
layout and/or behavior. The format of the options string is a semicolon-delimited list of
key/value string pairs separated by a colon. The value string (and its colon delimiter) are
optional. Spaces are ignored and quotation marks are not permitted in the attribute value. Here is
an example of an Options attribute:

<Panel ModuleName="MyModule" Options="size:big;color:red;full" >

When a Module is instantiated from the Layout, the options element is parsed by the Module
Loader and converted to a Java HashMap before passing to the Module as described in
Programmatic Setting of I1Ds. Both keys and values are converted to lowercase. The Options
parameter (with associated map) is currently only supported by the DTSDetail Module (see

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 9

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

Appendix A — DTS Editor Modules), but is available for use by user-developed Modules and
Plug-ins.

D.6 TabPanel Tag

The TabpPanel element consists of an optional P1acement attribute, and a sequence of Tab
elements, each element specifying the panel contents of the associated tab. The Tab element can
contain an optional L.abe1 attribute which provides an explicit value for the tab’s label.

The Placement attribute specifies where the panel’s tabs are to be placed. A value of “T”, or
“t” species the top of the panel, “B” or “b"” specifies the bottom, “R” or “r” specifies the
right side, and “L.” or 1" specifies the left side. The default is “T”.

The Label attribute is usually not necessary when the tab content is a Pane1. When it is
missing, the value returned by the getComponentShortName () method from the Module’s
base class is used as the tab’s label string.

The content of a Tab is the same as the content of the PanelLayout element: a Panel,
TabPanel Ofr MultiPanel:

<TabPanel Placement="t" >
<Tab >
<Panel ModuleName="DTSTree" TargetIID="detail" />
</Tab>
<Tab >
<Panel ModuleName="DTSWalker" TargetIID="detail" />
</Tab>
<Tab >
<Panel ModuleName="DTSSearch" TargetIID="detail" />
</Tab>
<Tab >
</TabPanel>

See the individual Panel, TabPanel and MultiPanel sections for details on these elements.

D.7 MultiPanel Tag

The Multipanel element builds a horizontal or vertical sequence of panels, each constituent
panel sharing the available space of the combined panel. The power of the MultipPanel is that
the constituent panels can themselves be compound panels. Like the TabPanel element, the
panel elements inaMultiPanel can be a panel, a TabPanel, or another MultiPanel. A
Divider element is also available to specify that a movable divider be placed between two
adjacent panels. Here is a simplification of the familiar default DTS Editor Layout:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 10

DTS 4: Editor Module Guide

<PanelLayout continuousLayout="true">
<MultiPanel Type="V">
<MultiPanel Type="H">
<TabPanel>
<Tab Name="tree" ModuleName="DTSTree"/>
<Tab Name="walker" ModuleName="DTSWalker"/>
<Tab Name="search" ModuleName="DTSSearch"/>
</TabPanel>
<Divider/>
<TabPanel>
<Tab Name="detail” ModuleName="DTSDetail"/>
</TabPanel>
</MultiPanel>
<Panel ModuleName="DTSStatus"/>
</MultiPanel>
</PanelLayout>

The top level layout element is a vertical (attribute Type="v”) MultiPanel consisting of
another MultiPanel and the DTsStatus Module Panel. The inner, horizontal, MultipPanel
consists of a TabPanel containing the DTSTree, DTSWalker and DTSSearch Module
panels, a movable Divider, and a second TabPanel containing the bTsbetail Module panel.

The continuousLayout attribute on the initial PanelLayout tag is an optional attribute that
specifies whether panels are continuously repainted when any MultiPanel Dividers are
being moved. The default is “true”.

A weight attribute is also available for the MultiPanel, TabPanel and Panel tags. Weight
provides “guidance” to the Layout builder as to how to apportion panel space among constituent
panels. The value of weight for a panel is a decimal number that is compared to the sum of the
other weight values in the encompassing panel to determine the proportion of space allocated to
the panel. For example, in the MultipPanel below:

<MultiPanel Type="H">
<Panel ModuleName="FirstPanel” Weight=".3"/>
<Panel ModuleName="SecondPanel” Weight=".6"/>
</MultiPanel>

the first panel is allocated one third (.3/.9) of the space. Constituent panels not having a weight
are given space according to their preferred sizes. While the Layout builder tries to honor weight
requests and specified preferred, minimum and maximum sizes, any such request is always
subject to constraints placed on the Layout from other Layout elements. Thus in the first
(vertical) MultiPanel of the default DTS Editor Layout, all extra space is allocated to the upper
panel because the bTsstatus Module panel asserts a single line maximum height. Finally, note
the Layout Editor does not consider weight values in its display algorithm.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 11

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

The actual layout directions used by the MultipPanel layout manager (top-to-bottom/bottom-to-

top, left-to-right/right-to-left) is determined by Locale settings. See the Internationalization
section below for details.

Panel attributes can also include the 11D and Target 11D Instance ldentifier (11D) attributes
used to facilitate inter-Module communication. 11Ds are described in the Module Events section
below.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 12

DTS 4: Editor Module Guide

E. Layout Editor

The Layout Editor is a GUI panel for creating and maintaining DTS Editor Layouts. The Editor
supports all of the Layout elements described in the preceding section. In the standard DTS
Editor Layout, the panel as accessed via the Layout Editor item inthe Options menu.

E.1 Editor Overview

Upon opening, the Layout Editor appears as below:

-
'S Layout Editor @
File Configure
Select Layout
Layouts :Default DTS Layout (5) P

Options | Menu Bar | Tool Bar I Layout|

Description: |Apelon Standard Layout
Enable automatic loading of User Plugins
Width: | 1024

Height: | 762

e

The Editor Menu bar holds the File and configure menus. These menus will be described at
the end of this section.

The main panel consists of an upper select Layout area with a Layout combo and a New
button, a middle definition area with four tabs which display the specifications of the Layout,
and a lower area containing six buttons for performing Layout Editor actions.

DTS supports both User and System Layouts. User Layouts, shown with a ““ (U) ” following the
Layout name, are available only to the current user; users can see their own User Layouts, but
not those of other users. System Layouts, shown with an “ (S) > after the name, are available to
(can be read by) all users but only users having the DTS Administrator privilege can create or
edit System Layouts.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 13

DTS 4: Editor Module Guide

To load an existing Layout into the Editor, select the Layout from the dropdown in the upper
selection area. The middle definition area will be loaded with the definition of the Layout. The
screen shot above shows the System Default DTS Layout. This Layout is always available for
selection, although in read-only form (all fields are disabled). See the description of the Copy
button below for instructions on how to create a writable version for modification.

To create a new Layout, click the new button in the selection area, and enter the Layout’s name
in the dialog. The definition area will be loaded with an empty User Layout.

The six buttons at the bottom of the Editor panel perform actions on the selected Layout. Some
buttons are only enabled when the Layout is writable, or has been modified.

e The copy button copies the selected Layout to a new Layout with a different name. Any
Layout, including a read-only Layout, can be copied. Non-Administrator users can copy
System Layouts, but only to a new User Layout. This can provide “starting points” for
Layout customization. If the user is a DTS Administrator, a User Layout can be copied to
a new System Layout. This is called Layout promotion.

e Delete deletes the selected Layout. System Layouts can only be deleted by DTS
Administrator users.

e Rename renames the current Layout.

e Save stores any modifications to the selected Layout.

e Restore discards current modifications to the Layout and loads the original Layout
definition.

e Cancel closes the Layout Editor. If any modifications are pending, a confirmation dialog
is shown.

The following sections describe the four tab panels that make up the definition area. These
panels provide for viewing and updating of Layout specifications.

Note: The descriptions that follow assume that the selected Layout is writable. If the selected
Layout is read-only, i.e. the Default DTS Layout (S) or another System Layout when the
user does not have the DTS Administrator privilege, all element context menus will consist of a
single view item which will open the associated parameter dialog in read-only mode (all fields
will be edit-disabled).

E.2 The Options Tab

The options tab (see screen shot above) shows the attributes associated with the L.ayout
element. There is a text description of the Layout (the bescription attribute), a checkbox for
setting whether automatic loading of user plugins at build time should be performed (the
EnablePlugins attribute), and fields for the optional width and Height attributes. As
described in the previous section, plugins are enabled for the default layout, but custom layouts
will usually leave this box unchecked. The default width and height are shown in the fields. You
can override the defaults by entering the desired integer value.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 14

DTS 4: Editor Module Guide

At the bottom of this, and the other tab panels, are two action buttons: C1ear and Restore.

e Clear clears the contents of the tab panel, restoring the field defaults, if any.
e Restore, Which is only enabled once modifications to the panel have been made,
discards any modifications and restores the elements’ previously saved values.

E.3 The Menu Bar Tab

The Menu Bar tab shows the menus (Menu elements) and associated menu items (SelectItem
elements) for the Layout:

S Layout Editor [

File Configure

Select Layout

Layout; :Default DTS Layout (S) -
- Menu Bar | Taol Bar | Layout

Menu Bar Module List

- |, File (f Separator -

[|| Tools (£) DTSAbout
- | Options (o) DTSAssocation
- 4 Clipboard [DT5Clipboard] DTSAuthority

Local Namespace [DT5LocalNamespace] DTSClassify
- @ Configuration [DTSConfiguration] DT5Clipboard
- Layout [DTSLayout] DT5CodeAndId =
ModuleManager [DTSModuleManager] DT5Configuration
Preference [DTSPreference] DTSConnect
-- 4 UserManager [DTSUserManager] DTSConnect. Connect
[| Help (h) DT5Connect. Disconnect
DTSConnect. Options
DTSDetail
DTSExit
DT5Help
DTSLayout

DT5Layout.Editor
DT5Layout.Select
DTSLocalMamespace

DTSModuleManager
DTSMNamespace -
Add Mer Ed Remaove Clea Restore 1 [m - +
Save Red e Copy Restore Delete Cancel

The menu bar menu and menu item entries are visualized in a tree format in the left portion of
the tab panel. The right portion of the tab panel is the Module List panel. This latter panel lists
all the Modules, and Module components, that can be used in menus. Note that some Modules,
like the DTSStatus Module, are not present in the list because they do not have an associated
menu item. As of DTS Version 4.3, new methods have been added to the Module API to support
passing feature availability information to Layout Editors. See the Example Module section
below for further information.

Menus are displayed as top level nodes with menu items as subordinate nodes. To see the menu
items below any menu, just expand the menu node. (In the screen shot above, the Options
© 2023 Apelon, Inc. Hingham Massachusetts
Page | 15

DTS 4: Editor Module Guide

menu has been expanded). Menu items are displayed with their menu item name followed by
their Module Name.

To add a new menu to the Menu Bar, click on the Add Menu button and enter the menu name in
the resulting dialog. If a menu or menu item is selected, the menu is added before the selected
menu. If there is no selection, the menu is added as the last menu.

To add a menu item to a menu, drag a Module, or Module component, entry from the Module List
panel to the menu tree. Tree nodes will be highlighted as the Module moves over the tree. .
Entries dropped on a menu item will insert a menu item at the drop location. If the drop location
IS a menu node, the entry is inserted as the last menu item in the menu. The Separator pseudo-
Module is available in the Module List panel to place a separator item in the menu. Remember
that some Modules will expose multiple menu items when the menu is realized. Module
components, on the other hand, will expose only one menu item.

Menu items, and whole menus, can be moved within the Menu Bar panel using drag and drop.
Available drop locations (tree nodes) are highlighted as an item is dragged over the tree. Menu
items can be dropped on any node. An item dropped on another menu item inserts the item at the
drop location. If the drop location is a menu node, the item is inserted as the last item in the
menu. Menus can only be dropped on other menu positions. The dropped menu, with all of its
subordinate items, is inserted as a new menu at the location. Note that internal drops are always
inserts; they do not replace the previous entry.

The normal internal drop mode is MOVE: after the drop, the moved item is removed from its
original location. If the ctr1 key is pressed during the drag, on the other hand, the drop mode is
COPY': the menu or menu item remains in its original location.

Selecting a menu or menu item enables the £dit and Remove buttons at the bottom of the tab
panel. These same options are available via a right-click context menu on the entry.

Pressing the edit button (or selecting the £dit context item) for a menu node opens the Menu
pParameters dialog:

| £ Menu Parameters for "File’ &J

Mame: File|
Mnemanic: | f

Command: |file

L.

This dialog displays the Menu attributes:
e Name is the name of the menu.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 16

DTS 4: Editor Module Guide

e Mnemonic is the optional one character mnemonic for the menu.
e Command IS an optional string value that is set as the command attribute on the menu
item. The command string is only used by Java programs and is not required.

Click the save button to save any modifications, Restore to discard modifications and return
to the original parameter values, and cancel to exit the dialog.

Pressing the Remove button (or selecting the Remove context item) for a menu node opens a
confirmation dialog to remove this menu and all of its associated items from the menu bar.

Pressing the dit button or (or selecting the £dit context item) for a menu item node opens the
SelectItem Parameters dialog:

-

|£| Selectltem Parameters for "DT55earch’ I,ﬁ,l

Mame: |[Search
Tool Tip:

Options:

This dialog displays the selecttem attributes associated with a menu item:

e Name IS the name (Name attribute) of the menu item. This value defaults to the Module
component’s short name, as specified in the Module class file, but it can be overridden by
typing an alternate value into the field.

e Tool Tip isthe tool tip string (Tip attribute) displayed when the mouse hovers over the
item. Any entered value overrides the value from the Module class file.

e Options isan optional parameter string that is passed to the Module when it is invoked.
This field is only enabled if the associated Module class file has designated that the
Module accepts an option string. See the Panel Tag section above for further information.

Pressing the Remove button (or selecting the Remove context item) for a menu item node opens
a confirmation dialog to remove this menu item from its parent menu.

E.4 The Tool Bar Tab

The Tool Bar tab shows the tool bar items (selectItem elements) for the Layout:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 17

DTS 4: Editor Module Guide

r -

'S Layout Editor =
File Configure

Select Layout

Layout: :Default DTS Layout (5) - Mew
Tool Bar | Layout

Tool Bar Module List

Connect [DTSConnect] Separator

Separator DTSAssociation

Tree [DTSTree] DTSClassify

Search [DTS5earch] DTSConnect

Walker [DTSWalker] DTSConnect. Connect

Separator DTSConnect.Disconnect

Local Namespace [DTSLocalNamespace] DTSDetail

Classify [DTSClassify] DTSHelp

Separator DT5LocalMamespace

Details [DTSDetail] DTSProperty

Associations [DTSAssociation] DTS5earch

Properties [DTSProperty] DTSSubset. SubsetEditor

Synonyms [DTSSynonym] DTSSynonym

Separator DTSTree

Subset [DTS5ubset] DTSVersion

Separator DTSWalker

Help [DTSHelp] TGL

Ed Remove Clea Restore
Sawve Rename Restore Delete
L

Tool bar entries are visualized in a list format. Entries are displayed with their Short Name and
Module Name. Again, note that only Modules that expose tool bar icons are present in the
Module List panel.

To add an item to the tool bar, drag a Module, or Module component, entry from the Module
List panel to the list panel. Tool bar nodes will be highlighted as the Module moves over the
list. A drop inserts a new tool item at the drop location. The separator pseudo-Module is
available in the Module List panel to place a separator item in the tool bar. Remember that
some Modules will expose multiple tool bar items when the menu is realized. Module
components, on the other hand, will expose only one tool bar item.

Like the Menu Bar panel, tool bar items can be moved within the Tool Bar panel using drag and
drop. Dropped entries are always inserted and use a MOVE drop mode unless the ctr1 key is
pressed.

Selecting a tool bar item enables the Edit and Remove buttons at the bottom of the tab panel.
These same options are available via a right-click context menu on the tool bar entry.

Pressing the dit button or (or selecting the £dit context item) for a tool bar entry opens the
SelectItem Parameters dialog. This dialog is the same as that of the menu item dialog
described above; it contains the Name, Tool Tip and Options fields.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 18

DTS 4: Editor Module Guide

Pressing the Remove button (or selecting the Remove context item) for a tool bar node opens a
confirmation dialog to remove this item from the tool bar.

E.5 The Layout Tab

The Layout Tab displays the panelLayout element. This panel contains the Continuous
Layout checkbox, the “drawing panel” for the Layout and another Module List panel. Here is
the Layout tab for the default DTS Editor Layout:

F ki
%‘ Layout Editor @
File Configure
Select Layout
Layout: iDefauIt DTS Layout (5) -

| Options | Menu Bar ITooI Barl LEYOUtl

Continuous Layout Module List

I — [Tab Panel

= - Harizontal MultiPanel

£| Walker Details Vertical MultiPanel

Divider

DTSAssociation

DTS Authority

DTSDetail

DTSDetail CTSMamespace. NamespaceEditor
DTSProperty

DTSSearch

CTSStatus

DT55ubset. SubsetCompare
T | prssubset. SubsetEditor
CTSSynonym

DTSTres

DTSTypes

DTs5tatus CTSVersion, ConceptCompare
CTSVersion.ConceptHistory
DTSWalker

TaL

iTree

DTSTree

= moa— = =

T

Clear Restore

Save Rename Restore Delete

h

The checkbox is normally selected so that the Layout will be continuously redrawn when panel
dividers are moved. As with the Menu Bar and Tool Bar panels, the Module List panel only
contains Modules, or Module components, that allow placement in the Layout. The TabPanel,
Horizontal MultiPanel,Vertical MultiPanel and Divider pseudo-Modules are also
available. The effects of entries will be described later.

As described in the DTS Editor Layouts section above, a Layout consists of one of the following
elements:
e Panel —asingle Module panel
e TabPanel —atabbed panel, i.e., Java JTabbedPane, consisting of multiple panels,
selectable by clicking on a tab label

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 19

DTS 4: Editor Module Guide

e MultiPanel —acompound panel consisting of a set of panels organized sequentially
either horizontally or vertically

The following sections describe these three elements and their associated operations.

The Panel Element

A panel element can exist as the lone element in a Layout or as a component of a TabPanel Or
MultiPanel. The Layout panel for a new Layout is a single, empty, panel, as shown below:

'S Layout Editor ﬁ

File Configure

Select Layout

Layout: Mew Layaout () -

| Options I Menu Bar ITooI Bar| LEIYOUtl

Continuous Layout Module List

Tab Panel

Horizontal MultiPanel

Vertical MultiPanel

Divider

DTSAssociation

DTSAuthority

DTSDetail
DTSMamespace . MamespaceEditor
DTSProperty

DTSSearch

(empty) DT55tatus

DT55ubset. SubsetCompare
DTSSubset. SubsetEditor
DTSSynonym

DT5Tree

DTSTypes
DTSVersion.ConceptCompare
CTSVersion. ConcepiHistory

DTsWalker
TQL

b

To associate a Module with an empty pane1, or change the Module currently associated with a
panel, drag a Module entry from the Module List panel and drop it on the panel area. (The
TabPanel, Horizontal MultiPanel, Vertical MultiPanel and Divider pseudo-
Modules cannot be dropped in a panel element.) The name of the Module will be displayed in
the middle of the pane1 area (see the efault DTS Layout example at the beginning of this
section).

A number of panel actions are available from the pane 1 s right-click context menu. To open
the menu, right-click anywhere in the panel. (The context menu is not available for an empty
panel.) As described below, some of these actions may not be present in all Panel contexts.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 20

DTS 4: Editor Module Guide

e Edit —opensthe panel Parameters dialog. See details below.
e Remove —opens a confirmation dialog to remove the panel from its parent element.
e Wrap with Tab Panel —replaces this panel element with a TabPanel element and

adds the original panel to the TabPanel.

e Wrap With Horizontal MultiPanel —replaces this panel element with a
horizontally-oriented MultiPanel element and adds the original Panel to the

MultiPanel.

e Wrap with Vertical MultiPanel — replaces this panel element with a vertically-
oriented MultiPanel element and adds the original Panel to the MultiPanel.

e Unwrap TabPanel —replaces this panel’ s parent TabPanel element with the panel.
This action is only present if the pane1 is the only element in the parent TabPanel.

e Unwrap MultiPanel —replaces this panel’ s parent MultiPanel element with the
panel. This action is only present if the pane1l is the only element in the parent

MultiPanel.

Selecting the Edit item in the Panel’ s context menu opens the Panel Parameters dialog:

-
| £ Panel Parameters for 'DTSDetail [&J
IID:
Target IID:
Options:
Weight:
Save Restore Cancel |
e

This dialog shows parameters common to all deployed Modules or Module components:

11D is an optional Instance Identifier for this Pane1. Use of this element is described
later in the Module Events section of this document.

Target IID ISan optional Target Instance Identifier for the Panel. Use of this element
is described later in the Module Events section of this document.

Options is an optional parameter string passed to the Module or Module component
when it is realized. This field is only enabled if the associated Module class file has
designated that the Module accepts an option string. This string is described in the Panel
Tag section above.

Weight isanumeric parameter only enabled when the panel is part of a MultiPanel.
The Weight parameter is discussed in the MultiPanel Tag section above.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 21

DTS 4: Editor Module Guide

The TabPanel Element

A TabPanel element can exist as the lone element in a Layout or as a component of another
TabPanel Or aMultiPanel. The screen shot at the top of this section shows two TabPanels
in the default DTS Editor Layout.

A TabPanel is displayed in normal tab panel style with a row of tabs at the top. To see the panel
associated with any tab, just click on the desired tab in the tab area. The contents of a tab can be
a Panel, another TabPanel OraMultiPanel.

TabPanels can be created in two ways:
1. By dropping the TabPanel pseudo-Module from the Module List panelinto a
TabPanel Or MultiPanel, Or
2. By selecting the wrap with TabPanel context menu item from a panel, TabPanel
OorMultiPanel.

To add a Module panel to an existing TabPanel, drag a Module or Module component from
the Module List panel into the tab area of the Tabpanel. If the drop position is over an
existing tab, a new tab will be inserted at that position and the remaining tabs moved to the right.
The new tab will contain a panel holding the Module. If the drop position is in the “open” area
past the last tab, the new tab will be added at end of the tab list. The label for the new tab will be
the short name of the Module or Module component as given in the class file. This label can be
changed by editing the L.abe1 field in the tab’s edit dialog (see below).

TabPanels and MultiPanels can be added to the TabPanel in a similar manner by dropping
these pseudo-Modules from the Module List panel. The default label of the new tab will be
Tabn Where n is the number of the tab position.

Tab can be reordered within the TabpPanel using drag and drop. Drag any tab to another tab
position, including the “open” position at the end of the tab area. When dropped, the tab will be
moved to (inserted at) that position. Tab COPY is not available.

TabPanels have two context menus, both available by right-clicking in the tab area. If the click
IS on an existing tab, the context menu contains the Edi t and Remove items.

Selecting Edit opens the Tab Parameter dialog:
|£| Tab Parameter I,ﬁ,l

Label: |Tree

This dialog shows the attribute associated with the Tab element:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 22

DTS 4: Editor Module Guide

e TLabel specifies the label on the tab. The value defaults to the Module component’s short
name for Module pPanels, or Tabn for TabPanels and MultiPanels, but the default
can be overridden by entering an alternate value into the field.

Selecting Remove from the tab context menu opens a confirmation dialog to remove the tab, and
its contents, from the TabpPanel.

A right click on the right-most (open) part of the tab area opens the TabPanel’ s context menu.
As described below, some of these actions may not be present in all Tabpanel contexts.

e Edit —opensthe TabPanel Parameters dialog. See details below.

e Remove —opens a confirmation dialog to remove the TabPanel from its parent element.

e Wrap with Tab Panel —replaces this TabPanel element with a new TabPanel
element and adds the original TabPanel to the TabPanel.

e Wrap With Horizontal MultiPanel —replaces this TabpPanel element with a
horizontally-oriented MultiPanel element and adds the TabPanel to the
MultiPanel.

e Wrap with Vertical MultiPanel — replaces this TabpPanel element with a
vertically-oriented MultipPanel element and adds the TabPanel to the MultiPanel.

e Unwrap TabPanel —replacesthis TabPanel’ s parent TabPanel element with the
TabPanel. This action is only present if the TabPanel is the only element in the parent
TabPanel.

e Unwrap MultiPanel —replaces this TabPanel’ s parent MultiPanel element with the

TabPanel. This action is only present if the TabPanel is the only element in the parent
MultiPanel.

Selecting the Edit item in the TabPanel’ s context menu opens the TabPanel Parameters
dialog:

il . |
| £ TabParel Parameters [&J
Placement: :E'I'op v:

Weight:

This dialog displays the Tabpanel attributes:

e Placement Specifies the location of the tabs in the TabPanel’s JTabbedPane. YOUu
can select Top, Right, Bottom, or Left from dropdown. The default is the top of the
pane. The Layout Editor display reflects this selection.

e TWeight isanumeric parameter only enabled when the panel is part of a MultiPanel.
The Weight parameter is discussed in the MultiPanel Tag section above.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 23

DTS 4: Editor Module Guide

The MultiPanel Element

AMultipPanel element can exist as the lone element in a Layout or as a component of a
TabPanel Or another MultipPanel. The screen shot at the beginning of this section shows two
MultiPanels in the default DTS Editor Layout.

AMultipPanel is displayed as a horizontal or vertical sequence of constituent panels with each
panel surrounded by a colored bar to the left and right (if a horizontal Mu1tiPanel) or above
and below (if a vertical MultipPanel). The colored bars are called Expanders. Expanders are not
part of the realized MmultiPanel, but are used by the Layout Editor to delimit the MultipPanel
and act as droppable areas for new Modules (see below). When nesting MultiPanels, the
panels use different colored Expanders to help distinguish each panel. The constituent panels of a
MultiPanel can be any mix of Panels, TabPanels and MultiPanels.

MultiPanels can be created in two ways:
1. By dropping the Horizontal MultiPanel Of Vertical MultiPanel pseudo-
Module from the Module List panelintoa TabPanel OF MultiPanel, OF
2. By selecting the wrap with Horizontal MultiPanel Of Wrap with Vertical
MultiPanel context menu item from a panel, TabPanel Of MultiPanel.

To add a Module panel to aMultiPanel, drag a Module or Module component from the
Module List panel onto one of the MultipPanel’ s Expanders. The Expander will be replaced
with a Panel containing the Module, and two new Expanders.

TabPanels and MultiPanels can be added to the MultiPanel in asimilar manner by
dropping these pseudo-Modules from the Module List panel.

The Divider pseudo-Module in the Module List panel represents a movable border element
that can be placed between any two panels inaMultiPanel. When the Layout is realized, the
Divider can be moved with the mouse to apportion the sizes of the adjacent panels. To add a
Divider tothe MultiPanel, drop a Divider onto any Expander. Note that a Divider cannot
be added at the beginning (above/left) or end (below/right) location in a MultiPanel. This
condition will also be checked when the Layout is saved. A Divider has a single context menu
item: Remove. Select this item to remove the Divider from the MultiPanel.

The MultipPanel’ s context menu is available by right clicking on any of the panel’s
Expanders. As described below, some of these actions may not be present in all MultiPanel
contexts.

e Edit—opensthe MultiPanel Parameters dialog. See details below.

e Remove —0Opens a confirmation dialog to remove the MultiPanel from its parent
element.

e Wrap with Tab Panel —replaces this MultipPanel element with a new TabPanel
element and adds the MultiPanel to the TabPanel.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 24

DTS 4: Editor Module Guide

Wrap With Horizontal MultiPanel —replacesthis MultipPanel element with a
new horizontally-oriented MultiPanel element and adds the original MultipPanel to
the new MultiPanel.

Wrap with Vertical MultiPanel — replaces this MultipPanel element with a new
vertically-oriented MultipPanel element and adds the original MultiPanel to the new
MultiPanel.

Unwrap TabPanel —replaces this MultipPanel’ s parent TabPanel element with the
MultiPanel. Thisaction is only present if the Multipranel is the only element in the
parent TabPanel.

Unwrap MultiPanel —replaces this MultipPanel’ s parent MultiPanel element with
the MultiPanel. Thisaction is only present if the MultipPanel is the only element in
the parent MultiPanel.

Selecting the Edit item inthe MultiPanel’ s context menu opens the MultiPanel
pParameters dialog:

r |
| £ MultiPanel Parameters [ﬁj
Type: | Wertical P w

Weight:
e

This dialog displays the MultiPanel attributes:

Type specifies the orientation of the MultiPanel. You can select vertical or
Horizontal from the dropdown. The Layout Editor display reflects this selection.
Weight isanumeric parameter only enabled when the panel is part of a MultiPanel.
The Weight parameter is discussed in the MultiPanel Tag section above.

E.6 Layout Editor Menus

The Layout Editor has two menus: File and Configure.

The File menu contains two items: Import and Export. These items convert between the
internal DTS Layout formats and external, XML-based file formats as described in the DTS
Editor Layouts section above. Layout files can be imported from, or exported to, the local client
file system. These actions are most commonly used for the exchange of Layouts between users
or between a user and a DTS Administrator for the purposes of promoting a User Layout to
System status.

The configure menu has only one item: set Default Layout. Selecting the item opens the
Set Default Layout dialog:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 25

DTS 4: Editor Module Guide

[% Set Default Layout [iE-r
User | System
Default Layout:
Mew Default: _Eruwse () -
Set Clear
b

Layout defaults control what Layout is shown when a user first connects to a DTS server in a
session. After connecting the first time, DTS looks for the user’s default Layout. If one exists,
this Layout is loaded. If the user has not designated a default Layout, DTS looks next for the
default system Layout. (The default system Layout must be a System Layout). This Layout is set
by a DTS Administrator and permits a common Layout to be loaded for all users. Finally, if a
default system Layout has not been specified, DTS loads the standard, classic, Layout. As
discussed earlier, this layout is maintained internally by DTS and cannot be modified.

To set a default user layout, select the desired Layout from the dropdown and click on the set
button. The selected Layout will be shown in the Default Layout line. To remove any
default Layout, click on the c1ear button.

The system tab in this dialog is used to set the default system Layout and is only available to
DTS Administrators.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 26

DTS 4: Editor Module Guide

F. Module Events

In addition to standard DTS events such as connection events
(com.apelon.beans.dts.plugin.connection.*) or knowledgebase events (subclasses
of com.apelon.dts.client.events.DataChangeEvent), the DTS Editor Module
Framework implements its own event class:

DTSEditorModuleEvent (String sourcelIlD, String targetIID,
DTSEditorModuleEventType type, Object wvalue)

The following sections provide further information on DTSEditorModuleEvents.

F.1 IIDs

Unlike standard Java events, the event source (initiating Module instance) and event target
(destination Module instance) are denoted by Module Instance Identifier strings, or 11Ds. 11Ds
are needed, rather than Module names, since it is common to have multiple “instances” of a
Module (such as a popup, or floating, Concept/Term Detail panel in addition to the panel in
the right tab pane), and a unique identifier is needed to refer to a specific Module instance.

I1Ds are created by the DTS Editor whenever a Module must be instantiated, either during
initialization as directed by the supplied Layout, or via a programmatic call. Editor-created 11Ds
are always unique integer Strings.

In addition to a Module instance’s own IID, the instance maintains a single target IID which
represents the destination 11D for any events fired by the Module. A Module’s target 11D is
assigned the null value by default, designating a “broadcast” event to all Modules. Module
events fired by the DTS Editor itself have an “anonymous” source IID of null, and most Modules
fire events with a target 11D of null. TargetlIDs can, however, be set by the developer as
described later in this section.

F.2 Event Types

Four types of events are defined in
com.apelon.apps.dts.editor.modules.DTSEditorModuleEventType:

DTSEditorModuleEventType CURRENT LOCAL NAMESPACE EVENT
DTSEditorModuleEventType STATUS EVENT
DTSEditorModuleEventType TRANSFER EVENT
DTSEditorModuleEventType EXIT EVENT

The CURRENT LOCAL NAMESPACE EVENT is fired by the DTS Editor on start-up, or when the
user selects a new Current Local Namespace. Both the sourceT1ID and targetI1Ds are always

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 27

DTS 4: Editor Module Guide

null. The value is the name of the selected Namespace. The DTSStatus Module, for example,
listens for this event and updates its display accordingly.

The sTATUS EVENT is a general information event. The value can be any object, although
typically it is simply a message string. This string is shown in the DTSStatus Module message
area.

The TRANSFER EVENT is fired by a Module when it wishes to transfer a selected object to
another panel, commonly due to an enabled “Click to Edit” option. The sourceIID is the
initiating Module IID, the target11D is usually null, and the value is a DTS Transferable, e.g. a
ConceptTransferable, TermTransferable, DTSPropertyTransferable, etc. DTS
transferables are all subclasses of the com.apelon.beans.dts.plugin.transferable
package. Use of the Transferable interface can often facilitate processing of a

TRANSFER EVENT by mimicking existing Drag and Drop actions. See Drop Functionality in the
Example section for more information.

The ExIT EVENT is fired by the DTS Editor when the Editor is about to be closed. This event
can be used to perform any required Module “clean-up”.

F.3 Event Processing

All events are delivered to all Modules via the DTSEditorModuleEventListener interface.
The default behavior for a Module listener is to process (recognize) any broadcast events (target
is null) or any event for which the event’s Target 11D is the same as the Module’s IID. In order
to provide fine-grained control of events, and to implement a general mechanism for inter-
Module communication, there are ways of getting and setting both the source and target 11Ds for
a Module instance.

As described above, the DTS Editor assigns an integer string 11D when a Module is instantiated.
Developers can override this default assignment in the Layout file by using the 11D and
TargetIID elementsinthe Tab and Panel tags.

An example of 11D assignment is the default DTS Editor MultipPanel repeated below:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 28

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

<MultiPanel Type="V">
<MultiPanel Type="H">
<TabPanel>
<Tab Name="tree" ModuleName="DTSTree"
TargetIID="detail”/>
<Tab Name="walker" ModuleName="DTSWalker"
TargetIID="detail”/>
<Tab Name="search" ModuleName="DTSSearch"
TargetIID="detail”/>
</TabPanel>
<Divider/>
<TabPanel>
<Tab Name="detail” ModuleName="DTSDetail"
IID="detail” />
</TabPanel>
</MultiPanel>
</MultiPanel>

Without the TargetIID assignments, TRANSFER EVENTs generated by the DTSTree,
DTSWalker, and DTSSearch panels would have their default target 11D set to null and be
“broadcast” to all panels. The Target 1D assignments, coupled with the explicit T1D
assignment on the DTsDetail panel, ensures that these events will only be accepted by the
DTSDetail instance created at layout time.

See Appendix A — DTS Editor Modules for descriptions of event processing for all of the standard
DTS Editor Modules.

F.4 Programmatic Setting of IIDs

I1D values can be read programmatically using methods from the DTSEditorModuleMgr class
instance passed to base Module classes during initialization (see the Example Module section
below for details). The getter methods are:

public String getComponentIID (JComponent comp)
public String getTargetIID (JComponent comp)

JComponent comp 1S the desired Module instance’s component, typically “this”.

There is no programmatic way to set a Module instance’s IID, but the target I1D can be set when
creating a new Module instance. Consider the case of a Module that wants to open a floating
DTSDetail panel and then send Concepts for display (via a “Click to Edit” function); or a
Module that wants to open a floating DTS Search panel and have search results sent back to
itself. These Modules can invoke the floating panel, and set its target 1D, via the following
method in DTSEditorModuleMgr:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 29

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

public String showModuleComponent (String compName,
HashMap<String, String> options, boolean modal, String title, String
targetIID)

This method displays a Module component as a floating dialog. It creates a new component
instance (named by compName) passing an options Java HashMap of String key/value pairs,
wraps it in a Jbialog, and sets the Dialog’s modality, title and the instance’s target 1ID. The
method returns the internally-generated 11D of the new instance. Thus the Module can now send
an event to the returned 11D, or receive events from the Module. See the DTSEditorModuleMgr
Javadoc for additional methods that deal with 11Ds.

One clarification is needed for the compName argument. A Module usually, but not always,
consists of a single menu option, optionally a single Toolbar item, and a single visible panel.
There are, however, common exceptions:

e The DTSStatus Module includes only a panel. No menu or toolbar items are exposed.

e The DTSConnect Module builds three menu items: Connect, Disconnect, and
Connect Parameters. OnIy one panel is EXpOSEdZ that for Connect Parameters.

e The DTSSubset Module has two independent components, the SsubsetEditor and
SubsetCompare, With two associated menu items but only one toolbar item.

To accommodate Modules with multiple panels such as DTSSubset, the Module Framework
defines Module Components. A Module Component is the logical name of a panel. When a
Module has only one component, the Module name can be used as the Module Component
name, e.g., DTSDetail. When there are multiple components, the Module Component name is
the concatenation of the Module name, a period, and the panel name, e.g.,
DTSSubset.SubsetEditor.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 30

DTS 4: Editor Module Guide

G. Internationalization

While not formally a part of the Module Framework, the DTS Editor has been extended to
support “translation” (internationalization) of the Editor for non-English environments.
Internationalization support includes resource files for translations of prompts and messages and
layout considerations (top-to-bottom/bottom-to-top, left-to-right/right-to-left). Details on the
procedures for internationalizing the DTS Editor, and on building internationalized Editor
Modules, can be found in the Internationalizing DTS Guide.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 31

DTS 4: Editor Module Guide

H. Example Module

This section will describe the process of creating a DTS Editor Module. The example is a
module named “DTSMonitor” that displays descriptions of events fired during a DTS Editor
session. (For ease of presentation, DTSMonitor does not follow internationalization policies.)

Here is a screen shot of the main DTSMonitor panel:

S DTS Monitor ||

DTS Editor Events

Module Event: Status Event=[null:null] 'Connecting ..."

Module Event: Current Local Mamespace Event=[null:null] Test'

Connection Opened Event Received

Module Event: Status Event=[null:null] "

Module Event: Transfer Event=[0:detail] 'Concept: 'Anesthesia’

Drop of Concept: 'Bone age studies [77072]'

Module Event: Transfer Event=[2:detail] 'Concept: 'Anesthesia for heart transplant or heart/lung transplant [00580]'
Drop of Property; UMLS CUI="C041191¢8"

The complete DTSMonitor code can be found in your DTS installation at the following path:

samples\editormodule\src\com\apelon\modules\dts\editor\monitor

The samples\editormodule folder also contains readme and install.bat files. The latter file
compiles the source, builds a jar and places the jar in your lib\modules folder where it will be
recognized by the DTS Editor Module loader. As described below, the default Plug-in
implementation adds an item in the Toolbar, an item in the Tools menu, an item in the Help
menu, and an instance in the Editor right tab panel.

H.1 Module Registration

Like its Editor Plug-in predecessor, a Module base class must fulfill the following two conditions
to be recognized by the DTS Editor.

1. The base class extends the DTSEditorModule class.
2. The base class (and all the associated java class files) must reside in a package
recognized by the DTS Editor.

The simplest way for a prospective Module to be recognized is to create the Module in the
com.apelon.modules.dts.editor package or in any of its subpackages
(com.apelon.modules.dts.editor.*). This is the approach taken by the DTSMonitor
Module:

Package
package com.apelon.modules.dts.editor.monitor;

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 32

DTS 4: Editor Module Guide

The DTS Editor will also search in other packages that are specified in the DTS Editor
configuration file (usually bin/editor/dtseditor.xml) as follows:

e Place the number of module packages to be searched in the modulePackageCount
property. For example, if there are two modules:

<property name="modulePackageCount" value="2">

e Place the names of the module packages in modulePackageNamel . .n properties:

<property name="modulePackageNamel" value="com.mycompany.dts.plugin"/>
<property name="modulePackageName2"
value="com.mycompany.dts.plugin2"/>

The DTS Editor will search packages in the following order:

modulePackageNamel..n
com.apelon.modules.dts.editor
com.apelon.modules.dts.editor.*

H.2 Imports

A Module needs to import the com.apelon.apps.dts.editor.modules package. This
package contains the following classes which contain fields and methods that provide access to
DTS Editor functionality:

e DTSEditorConfig - Provides access to DTS Editor configuration settings.

e DTSEditorModule — Must be extended by your module in order to be recognized as a
plug-in.

e DTSEditorModuleEvent — Defines DTSEditor Module events.

e DTSEditorModuleEventListener — Defines the interface for receiving Module
events.

e DTSEditorModuleEventType — Defines the types of Module events.

e DTSEditorModuleMgr — Allows the Module to access DTS Editor functions and DTS
Services.

e DTSModuleConfig— Used to access and save module specific properties.

The sections below describe how these classes are used in a typical custom Module. See the DTS
Javadoc for full information on the classes.

// Apelon Imports
import com.apelon.apps.dts.editor.modules.*;

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 33

DTS 4: Editor Module Guide

H.3 Class Declaration

DTSEditorModule class must be extended to create a custom Module for the Editor. The
extending class must have a no parameter constructor or the class will not be recognized as
a Module.

Modules must override the getModuleName (), getModuleVersion (), and
getComponentShortName (String name) methods. The getModuleName method is called
at Module registration. The other methods are called as described later in this section. As
mentioned earlier, the Module short name is typically used as a tab name for TabrPanels (See
the Editor Layout section).

Modules should also override, or at least confirm the default implementation, of the five
informational Layout methods. These methods are provided to assist Layout editors, in particular
the DTSLayout Module, to make Modules available in menus, toolbars, and layouts. (See the
Layout Editor section above for further information.) The methods are only called by Layout
editors. The five methods are:

e getComponentNames () This method returns an array of Strings representing the
components exposed by the Module. The strings should include the Module name and the
names of any Module components. The default implementation returns a single-entry
array with the Module name.

e isMenuComponent (String name) This method returns a Boolean designating
whether the named Module/Module component can server as a menu item. This method
should support all names returned by getComponentNames and the return should be
consistent with the values returned by getModuleMenulItems. The default
implementation returns t rue for the Module name and fa1lse otherwise.

e isToolbarComponent (String name) This method returns a Boolean designating
whether the named Module/Module component can server as a toolbar item. This method
should support all names returned by getComponentNames and the return should be
consistent with the values returned by getModuleToolbarItems. The default
implementation returns t rue for the Module name and fa1se otherwise.

e isLayoutComponent (String name) This method returns a Boolean designating
whether the named Module/Module component can server as a layout item (has a callable
component). This method should support all names returned by getComponentNames
and the return should be consistent with the values returned by getModuleComponent.
The default implementation returns true for all names.

e hasOptions (String name) This method returns a Boolean designating whether the
named Module/Module component accept options. This method should support all names
returned by getComponentNames and the return should be consistent with the option
parameter passed in getModuleComponent. The default implementation returns false
for all names.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 34

DTS 4: Editor Module Guide

Class Declaration
public class DTSMonitor extends DTSEditorModule
implements DtsConnectionListener ({

/** Component names */

private final static String MODULE NAME = "DTSMonitor";
private final static String VERSION = “1.27;

private final static String SHORT NAME = "Monitor";

private final static String HELP NAME = “DTS MonitorHelp”;
private final static String CONFIG NAME = "DTSMonitorConfig";

public DTSMonitor () {
super () ;

}

public String getModuleName () {
return MODULE_NAME;

}

public String getModuleVersion () {
return VERSION;
}

public String getComponentShortName (String name) {
if (name.equals (getModuleName ())) return SHORT NAME;
return "";

}

//default implementations are correct for layout information methods

H.4 Initializing the Module

As previously described, only getModuleName is called at Module registration. The
getModuleVersion is called as required for informational purposes. Most other Module
methods are invoked when the Module is “loaded”, either because the Module is explicitly
named in the Layout, or it is requested as a plug-in. The specific sequence of method calls is
different for these two cases. The description immediately below is for the Layout use-case. A
subsequent section will describe the plug-in case.

The sequence of actions taken by the Editor loader for a Layout use-case is:

o If a Module configuration file is specified by getDTSModuleConfigFile (), a
DTSModuleConfig object is set up. This object is available via the
getDTSModuleConfig method.

e The initModule method is called.

e If the Module name is specified in a Menu tag, menu items returned by
getModuleMenultems are added to the menu

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 35

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

o If the Module name is specified in a Too1Bar tag, toolbar items returned by
getModuleToolbarItems are added to the toolbar.

e The getModuleComponent method should be implemented if the Module name is
specified in the PanelLayout tag, or if floating panels are displayed via the
DTSEditorModuleMgr.showModuleComponent method.

Details of these steps are described below.

A Module can use a private configuration file to hold operational parameters/policies that can
persist across DTS Editor instances. To use a configuration file, a Module must override
getDTSModuleConfigFile to return the name of the configuration file. Typically, the file is
located in the default Editor directory whichisbin/editor, and
getDTSModuleConfigFile returns just the file name (no path). The DTS Editor loader then
opens the file, creating it if it does not exist, and creates a DTSModuleConfig object which is
available to the Module through the get DTSModuleCon fig method. We will describe the use
of the configuration file later in this example.

All plug-ins must implement initModule. This method is called by the DTS Editor at start-up
and serves three purposes:

1. Provides the Module with a copy of the DTSEditorModuleMgr class;
2. Informs the Module whether it is being initialized in the Layout or Plug-in mode; and
3. Allows for any Module-specific initialization steps to occur.

The reference to the DTSEditorModuleMgr class is the Module’s interface to the exposed
functionality of the DTS Editor. The DTSEditorModule.UsageType parameter is one of the
UsageType values LAYOUT or PLUGIN. DTSMonitor is written to permit its use in either Layout
or Plug-in modes. The primary difference is that in Plug-in mode, the Module must explicitly
place any components in the layout.

The following steps occur in the initModule implementation in the DTSMonitor example:
e Invokes the super class method to perform common initialize steps
e Ifin Plug-in mode, place the DTSMonitor panel in the Editor layout (additional details
will be provided in a later section)

The superclass initModule method performs two actions:

1. Initializes the moduleManager instance variable to hold a reference to the supplied
DTSEditorModuleMgr parameter. This value is frequently required within the custom

Module class.
2. Registers a DtsConnectionListener on the instance. This enables connection events

to be handled by the base Module class such as enabling and disabling of menu items.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 36

DTS 4: Editor Module Guide

Initialization
DTSEditorModuleMgr moduleMgr;

public String getDTSModuleConfigFile () {
return "DTSMonitor.xml";

}

public void initModule (DTSEditorModuleMgr mgr,
DTSEditorModule.UsageType usage) {

// let the base class do its thing
super.initModule (mgr, usage);

//if in plug-in mode, add to layout
if (usage==DTSEditorModule.UsageType.PLUGIN) {
addMonitorComponent () ;

H.5 Getting Module Menu and Toolbar Items

After calling the initModule method, the DTS Editor retrieves Module menu and/or toolbar
entries if such entries are requested in the Layout. Action listeners need to be added to each item
to provide the desired functionality, usually opening of a floating panel.

The getModuleMenultems method passes a parameter which is the name of the associated
menu. Since most Modules only place menu items in one menu, usually this parameter can
usually be ignored, but DTSMonitor includes a “help” menu item so the menu name is tested.

The buildMenuTltemand buildToolbarItem methods are “helper” methods provided by
DTSEditorModule to simplify creation of select (menu and toolbar) items. See the
DTSEditorModule Javadoc for details.

ThEregisterSelectItems(JComponent[] items)lﬂeﬂmdiSFﬂovmedby
DTSEditorModule to support enabling and disabling of select items. This method simply
returns the array of JComponents passed in so it can be used “in-line”. The buildMenultem
and buildToolbarItem methods described above disable their returned items. This is typically
appropriate since most select items are disabled before a server connection is established.
registerSelectItems addsthe argumentitemstoa selectItems List. Whena DTS
connectionOpened event is received, all items on this list are enabled. When a DTS
connectionClosed event is received, the items are disabled. Individual Modules can, of
course, provide their own select item processing by overriding the connectionOpened and
connectionClosed events and/or not using registerSelectItems. Remember that a given
Layout can have multiple instances of a menu or toolbar item, so single instance variables with
these items should not be used.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 37

DTS 4: Editor Module Guide

Menu Item Code
public JMenulItem[] getModuleMenultems (String menuName) {
if (menuName.equalsIgnoreCase (“help”)) {
return (JMenultem[])registerSelectItems (
new JMenultem|[] { getDTSMonitorHelpMenultem() 1});
}
else {
return (JMenultem[])registerSelectItems (
new JMenultem[] { getDTSMonitorMenultem(),
getDTSMonitorConfigMenultem() };

}

private JMenultem getDTSMonitorMenultem() {
return buildMenulItem("DTS Monitor ..", -1,
"Open DTSMonitor",
null, null, MODULE NAME,
new ActionListener () {
public void actionPerformed (ActionEvent e) {
dtsMonitorAction (e);
}
}
)
}

private JMenultem getDTSMonitorConfigMenultem() {
return buildMenulItem ("DTS Monitor Configuration ..", -1,
"Open DTSMonitor Configuration",
null, null, CONFIG NAME,
new ActionListener () {
public void actionPerformed (ActionEvent e) {
dtsMonitorConfigAction (e);

}

) 7
}

private JMenultem getDTSMonitorHelpMenultem() {
return buildMenultem ("DTS Monitor Help ..", -1,
"Open Help for DTS Monitor ",
null, null, HELP NAME,
new ActionListener () {
public void actionPerformed (ActionEvent e) {
dtsMonitorHelpAction (e);
}

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 38

DTS 4: Editor Module Guide

Toolbar Item Code

public JComponent|[] getModuleToolbarItems () {
return registerSelectItems (

new JComponent|[] { getDTSMonitorToolbarItem() 1});

}

private JComponent getDTSMonitorToolbarItem() {
URL url = getClass () .getResource ("apeliconl6.gif");
ImagelIcon toolbarImage = new ImagelIcon (url, "GIEF");

return buildToolbarItem(toolbarImage, "Open DTSMonitor",

new ActionListener () {
public void actionPerformed (ActionEvent e) {
dtsMonitorAction (e) ;

}

H.6 Getting Plug-in Menus, Menu Items and Toolbar Items

In Plug-in mode, the Module can specify whole new menus, menu items and toolbar items. For
Plug-in use, the getModuleToolbarItems method is called to retrieve any plug-in toolbar
items. The method is the same as that used in Layout mode. For menu items, however, the
getModuleMenuItems method has an integer parameter, corresponding to a particular menu

group in the standard DTS Editor layout. The menu group parameter value is defined in

DTSEditorModule:

public static final int FILE MENU ITEMS = 1;
public static final int VIEW MENU ITEMS = 2
public static final int TOOLS MENU ITEMS =
public static final int OPTIONS MENU ITEMS
public static final int HELP MENU ITEMS = 5;

’

4;

I W ~e

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 39

DTS 4: Editor Module Guide

Here is the code for creating the DTSMonitor Plug-in menu items:

Menu Item Code

public JMenultem[] getModuleMenultems (int group) {

// Create an empty array of JMenultems to hold our custom items
JMenultem[] menultems = new JMenultem[O];

// Create a list for the desired menu group
switch (group) {
case TOOLS MENU ITEMS:

menultems = new JMenultem[] {getDTSMonitorMenultem(),
getDTSMonitorConfigMenultem() };
break;
case HELP MENU ITEMS:
menultems = new JMenultem]]
{ getDTSMonitorHelpMenultem() };
break;
default:
break;

}
return (JMenultem[])registerSelectItems (menultems)

}

Again, registerSelectItems IS used to automatically handle enabling and disabling these
items.

Finally, while not used in the DTSMonitor Module, getModuleMenus can be used to place one
or more complete menus in the DTS Editor Menu bar. Menus must already be populated with the
desired menu items. Menu(s) will be placed to the left of the Help menu.

Setting Plug-in Components

As shown in the DTSMonitor initModule listing above, Plug-in modules must explicitly place
their components in the standard DTS Editor layout. Two methods are provided in
DTSEditorModule for this purpose:

public JTabbedPane getLeftTabbedPane ()
public JTabbedPane getRightTabbedPane ()

These methods return the left and right JTabbedPane instances for the standard DTS Editor
layout. The following method shows how DTSMonitor places its main component for Plug-ins:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 40

DTS 4: Editor Module Guide

Component Placement Code
/** Add the component to the right tab pane */
private void addMonitorComponent () {
JTabbedPane pane = moduleMgr.getRightTabbedPane (
pane.addTab (getComponentShortName (getModuleName (
getModuleComponent (getModuleName (), null));

) ;
)) .

The second argument to the getModuleComponent method is a Java HashMap of String
key/value pairs that is passed to the component (nul1 in the above example). This options
HashMap argument is often generated from the options element in the Panel and Tab tags in
the DTS Editor Layout file as described in the Panel Tag section above. The interpretation of the
option values is entirely up to the component.

H.7 Handling Connection Events

A Module can respond to the DTS Editor’s server connection events by overriding the default
connectionOpened, connectionWillClose, connectionClosing, and
connectionClosed methods provide in DTSEditorModule. This is typically not required

unless special select item handling is necessary. DTSMonitor does not override the default
methods.

H.8 Initialization Summary

A Module needs to implement initModule and optionally, getDTSModuleConfigFile. If
there is a GUI, the Module should provide access by implementing getModuleMenus (if a
Plug-in), getModuleMenultems and/or getModuleToolbarItems. TO support enablement
of select items, the Module should use the registerselectItems method or provide its own
custom handling of items and connection events

The next step is to design and implement Module panel functionality.

H.9 Creating a Panel for the Module

Although not required, a custom Module is likely to be GUI-based. This will require the
definition of one or more panels that will be the user interface to the Module’s functionality. The
panels access DTS and DTS Editor functionality (APIs) via the copy of the
DTSEditorModuleMgr class which was passed to the Module in the initModule method.

Layout panels are accessed via the getModuleComponent method. Floating panels use the
DTSEditorModuleMgr.createDialog Or the DTSEditorModuleMgr. showComponent
methods. All these methods require creation of a Jpane1 that contains the Module GUI.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 41

DTS 4: Editor Module Guide

The DTSMonitor Module implements a Layout and floating panel for displaying events, and a

configuration panel for specifying the types of events to be displayed. A

DTSEditorModuleMgr helper method is used to show the help URL. This is the code to invoke

the panels:

Panel Handling Code
/** Open Monitor panel */
private void dtsMonitorAction (ActionEvent e) {

JDialog dialog = moduleMgr.createDialog (panel,
"DTS Monitor", 0,);
dialog.setModal (false);
dialog.setVisible (true);
}

/** Open Monitor Configuration Panel */

JDhialog dialog = moduleMgr.createDialog (panel,
"Configure DTSMonitor", 0, 0);
dialog.setModal (true) ; //modal
dialog.setVisible (true);
}

/** Show the DTSMonitor help file */

private void dtsMonitorHelpAction (ActionEvent e) {
URL url = getHelpRelativePath();
moduleMgr.showHelpPanel (url) ;

}

/** get a new DTSMonitorPanel */
private DTSMonitorPanel getDTSMonitorPanel () {

}
/** get a new DTSMonitorConfigPanel */

return new DTSMonitorCfgPanel (moduleMgr,
getDTSModuleConfig()) ;

final DTSMonitorPanel panel = getDTSMonitorPanel ();

private void dtsMonitorConfigAction (ActionEvent e) {

DTSMonitorCfgPanel panel = getDTSMonitorConfigPanel ()

return new DTSMonitorPanel (moduleMgr, getDTSModuleConfig()):;

private DTSMonitorCfgPanel getDTSMonitorConfigPanel ()

H.10 DTSMonitor Functionality

The objective of the DTSMonitor Module is to display/report the various events that are
available in the DTS Editor environment. Four types of events are supported:

e DTS Connection Events e DTS Data Change Events
e DTS Editor Module Events e DTS Drop Events

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 42

DTS 4: Editor Module Guide

A configuration panel is available to select/deselect event types for display. Standard Java Swing
techniques and components are used in the implementation, and will not be reviewed here.
Similarly, the reader is referred to the sample code for details on the specific output logic for the
various event types.

Two points are worth noting. First, the constructor tests to see if a connection is already present.
This is typically required when the Module can be used as a Layout panel, since it cannot be
assumed that a connection is open when the Layout is built, and data listeners can only be added
when a connection is present. Second, the Module supports an associated Details popup panel. If
a connection is already present, and the popup is specified in the configuration, a DTSDetails
Module panel is opened using the familiar swingUtilities.invokeLater pattern.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 43

DTS 4: Editor Module Guide

Panel Constructor Code

public class DTSMonitorPanel extends JPanel
implements DtsConnectionListener,
DTSEditorModuleEventListener,

ConceptListener, TermListener,
KBTypelListener, ClassifyListener,
SubsetlListener {

private DTSEditorModuleMgr dtsModuleMgr;

private DTSModuleConfig config;

private JTextArea textArea;

private String detailIID; //I11ID of DTSDetail popup

public DTSMonitorPanel (DTSEditorModuleMgr mgr,
DTSModuleConfig config) {
super () ;
dtsModuleMgr = mgr;
this.config = config;
try |
buildPanel () ;
addListeners () ;

setTransferHandler (new MonitorTransferHandler ()):;

//1f this is a floating panel, enable the data listeners

if (DTSAppManager.getQuery() .isOpen()) {
enableDatalisteners (true) ;
detailIID = null; //to be used later

showPopup () ;
}

}

catch (Exception ex) {

dtsModuleMgr.handleException ("Error constructing
DTSMonitorPanel", ex);

dtsModuleMgr.showErrorMessage ("Cannot construct
DTSMonitorPanel.") ;

}

}

public void addListeners () {
dtsModuleMgr.registerConnectionListener (this);
dtsModuleMgr.registerModuleEventListener (this);
}

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 44

DTS 4: Editor Module Guide

private void openPopup () //1f enabled, open a popup DTSDetail
panel
//defer so it doesn't get hidden by main panel
if (config.getBooleanProperty (DTSMonitor.DETAIL POPUP, false)) {
SwingUtilities.invokeLater (new Runnable () {
public void run () {
detailIID = dtsModuleMgr.showModuleComponent ("DTSDetail",
null, false, "DTS Monitor Details",

null, //no target
needed
20, 20, //relative location
300, 300); //DTSDetail size

Connection Event Functionality

As shown above, the listener for Connection events is set up in the DTSMonitorPanel
constructor. This listener can be registered independent of the connection status. The events
themselves are processed by the DtsConnectionListener interface methods:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 45

DTS 4: Editor Module Guide

Connection Processing Code

public void connectionOpened (DtsConnectionEvent event) {
enableDatalListeners (true) ;
if (config.getBooleanProperty (DTSMonitor.CONNECT EVENTS, true)) {
addEvent ("Connection Opened Event Received");
enableEventArea (true) ;
}
openPopup () ;
}

public void connectionWillClose (DtsConnectionEvent event,
ConnectionCloseVeto vetoClose) {
if (config.getBooleanProperty (DTSMonitor.CONNECT EVENTS, true)) {
addEvent ("Connection Will Close Event Received");

}

public void connectionClosing (DtsConnectionEvent event) {
if (config.getBooleanProperty (DTSMonitor.CONNECT EVENTS, true)) {
addEvent ("Connection Closing Event Received");
}
}

public void connectionClosed (DtsConnectionEvent event) ({
enableDatalisteners (false);
if (config.getBooleanProperty (DTSMonitor.CONNECT EVENTS, true)) {
addEvent ("Connection Closed Event Received");
enableEventArea (false);

Note how the DTSModuleConfig object is used to “filter” the events to be displayed.

Module Event Functionality

The DTS Module event listener is similarly set up in the DTSMonitorPanel constructor. The
listener interface is straightforward: it checks if Module events are to be reported, then prints the
event in a standard format. The code to construct a Transferable string is shared with that for
DnD:

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 46

DTS 4: Editor Module Guide

Module Event Processing Code
public void eventOccurred (DTSEditorModuleEvent me) {
if (config.getBooleanProperty (DTSMonitor.MODULE EVENTS, true)) {
//build a common preamble
String preamble = "Module Event: "+me.getEventType ()+"=["+
(me.getSourceIID()==null?"null":me.getSourceIID())+":"+
(me.getTargetIID()==null?"null":me.getTargetIID())+"] ";
if
(me.getEventType () ==DTSEditorModuleEventType.TRANSFER EVENT) ({
addEvent (preamble+
getTransferableDescription ((Transferable)me.getValue())):;
}
else {
addEvent (preamble+""'"+me.getValue () .toString () +"'");
}

Data Change Event Functionality

The DTSMonitor Module recognizes all six DTS “data” events :

ConceptEvent
TermEvent
KBTypeEvent
ClassifyEvent
NamespaceEvent
SubsetEvent

Listeners for these events can only be registered once a connection has been made, so the
registration is encapsulated by an enablebatalistener () method called from the connection
listeners. Refer to the individual event listeners for details on event object reporting.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 47

DTS 4: Editor Module Guide

Data Change Processing Code

/**

* Add/remove data listeners

* @param enable true to register listeners,

*/

false to remove

private void enableDatalisteners (boolean enable) {

if (enable)

{

DTSAppManager.getQuery () .getAssociationQuery () .addConceptListener (th

is);
DTSAppManager.

DTSAppManager.
s)i

DTSAppManager.
) i

DTSAppManager.
is);

DTSAppManager.
}

else {

DTSAppManager
(this) ;

DTSAppManager.
s)i

DTSAppManager.
this);

DTSAppManager.
his);

DTSAppManager.
(this) ;

DTSAppManager.

}

else {

getQuery ()

getQuery ()

getQuery ()

getQuery ()

getQuery ()

.getQuery ()

getQuery ()

getQuery ()

getQuery ()

getQuery ()

getQuery ()

.getTermSearchQuery () .addTermListener (this) ;

.getAssociationQuery () .addKBTypeListener (thi

.getClassifyQuery () .addClassifyListener (this

.getNamespaceQuery () .addNamespacelListener (th

.getSubsetQuery () .addSubsetListener (this);

.getAssociationQuery () .removeConceptListener

.getTermSearchQuery () .removeTermListener (thi

.getAssociationQuery () .removeKBTypelListener (

.getClassifyQuery () .removeClassifylListener (t

.getNamespaceQuery () .removeNamespacelListener

.getSubsetQuery () .removeSubsetListener (this)

addEvent ("Invalid Concept Event”);

}

Page | 4

DTS 4: Editor Module Guide

/** Representative data event handler */
public void conceptActionOccurred (ConceptEvent event) {
if (config.getBooleanProperty (DTSMonitor.DATA EVENTS, true)) ({
int eventNum = event.getEventType()
if (eventNum == ConceptEvent.EVENT TYPE NEW) {
addEvent ("Concept '"+event.getConcept () .getName ()+"' added");

}
else 1f (eventNum == ConceptEvent.EVENT TYPE MODIFY) {

addEvent ("Concept '"+event.getConcept () .getName () +"'
modified") ;
}
else 1f (eventNum == ConceptEvent.EVENT TYPE DELETE) {

addEvent ("Concept '"+event.getConcept7).getName()+"'
deleted") ;

}

H.11 Drop Functionality

If enabled in the configuration file, the DTSMonitor Module reports drop events on the monitor
panel. Much of the editing done in the DTS Editor relies on or is facilitated by DnD
functionality. Support for DnD between existing DTS panels and custom Modules or between
different custom Modules panels can greatly enhance the capabilities of each.

Various DTS objects can be dragged and dropped between the DTS Editor and a Module. These
include Concept Association, Concept, Property, Role, Subset, Synonym, Term Association and
Term. Each of these has a corresponding Transferable object such as ConceptTransferable,
TermTransferable, etc. In turn, each of these Transferable objects contain certain
DataFlavors that can be retrieved once the object is dropped.

For instance, if a ConceptAssociationTransferable is dropped, a Concept Association,
DTS Concept or String object can be obtained and used in the plug-in. DTS transferable objects
are all contained in subclasses of the com.apelon.beans.dts.plugin.transferable
package. DnD support for standard DTS Modules is described in Appendix A — DTS Editor
Modules.

DTSMonitor drop recognition is provided via an implementation of the Java
TransferHandler class called MonitorTransferHandler. An instance of this class is
added to DTSMonitorPanel in the constructor (see the DTSMonitor Functionality section
above). To accept drops only the canTmport () and importData () methods need be
implemented. In the code below, the i sbataFlavorSupported () method checks for a valid
DTS Transferable flavor. If this call is successful, importData () extracts the transfer data and
decodes the DTS object type using the (shared) getTransferableDescription () method.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 49

DTS 4: Editor Module Guide

Drop Functionality Code
// Handle a Drop on the panel
private class MonitorTransferHandler extends TransferHandler {

//do we support this drop
boolean canImport (JComponent comp, DataFlavor|[] transferFlavors) {
for (DataFlavor flavor : transferFlavors)
if (isDataFlavorSupported(flavor)) return true;
false;

}

//process a drop

public boolean importData (JComponent comp, Transferable trans) {
1f (!config.getBooleanProperty (DTSMonitor.DND EVENTS, true))
return false;

if (trans == null) {
textArea.append("Drop failed. No data found in the drop
object.");
return false;
}
addEvent ("Drop of "t+getTransferableDescription (trans));
return true;

}

//test for supported flavors
private boolean isDataFlavorSupported(DataFlavor flavor) {
if (flavor.equals (DTSDataFlavor.multiFlavor)) return true;
if (flavor.equals (DTSDataFlavor.conceptFlavor)) return true;
if (flavor.equals (DTSDataFlavor.synonymFlavor)) return true;
if (flavor.equals (DTSDataFlavor.propertyFlavor)) return true;
if (flavor.equals (DTSDataFlavor.roleFlavor)) return true;
if (flavor.equals (DTSDataFlavor.conceptAssociationFlavor))
return true;
if (flavor.equals (DTSDataFlavor.termFlavor)) return true;
if (flavor.equals (DTSDataFlavor.termAssociationFlavor))
return true;
if (flavor.equals (DTSDataFlavor.subsetFlavor)) return true;
return false;

Py

}

} //end of transfer handler

H.12 Showing Drop Details

Floating Module panels are usually invoked through Menubar or Toolbar item selections, but the
DTS Editor Module Framework also provides a method for programmatically opening panels
within Module code. The DTSMonitor Module implements an option to show a popup

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 50

DTS 4: Editor Module Guide

DTSDetail panel and fill this panel from DnD Concept/Term events. The code to invoke a
floating DTSDetail panel is show below. Invocation is based on a configuration setting and is
deferred to let the Ul settle.

Panel Invocation Code

if (config.getBooleanProperty (DTSMonitor.DETAIL POPUP, true)) {

SwingUtilities.invokelater (new Runnable () {
public void run() {
detailIID = dtsModuleMgr.showModuleComponent (
"DTSDetail",
false,
"DTS Monitor Details",
null, //no target needed
20, 20, //Monitor-relative location
300, 300); //DTSDetail size

To direct the DnD transferable to the created panel, a Module event is fired whose target 11D is
the 11D of the DTSDetail panel. This is the reason the 1D is saved in the detai111D variable

above. Here is the associated code from the DnD handler:

Transfer Event Code

if (detailIID!=null) {
dtsModuleMgr. fireModuleEvent (
new DTSEditorModuleEvent (
dtsModuleMgr.getComponentIID (DTSMonitorPanel.this),
detailIID,
DTSEditorModuleEventType.TRANSFER EVENT,
trans));

H.13 Error Handling

Modules can write error messages to the standard DTS Editor log file and also display popup
message dialogs by using the DTSEditorModuleMgr showErrorMessage () and
handleException () methods. The example below is taken from the DTSMonitorCfgPanel

constructor.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 51

DTS 4: Editor Module Guide

Error Handling Code

public DTSMonitorCfgPanel (DTSEditorModuleMgr mgr,
DTSModuleConfig config) {
super (new BorderLayout()):;
moduleMgr = mgr;
this.config = config;
try f{
buildPanel () ;
}
catch (Exception ex) {
//log error and show error dialog
moduleMgr.handleException (
"Cannot construct DTSMonitorCfgPanel.", ex);

H.14 Configuration Management

The DTsMonitorCfgPanel enables the selection of which of the four event types should be
reported and whether a Details box should be opened for DnD events. These user selections are
saved in the Module’s configuration file, as specified by the get DTSModuleConfigFile ()
method. A screen shot of the panel is shown below:

% Configure DTSMonitor ﬁ

Select configuration options for DTSMonitor:

Report Connect Events
Report Data Change Events
Report Drag and Drop Events

Report Module Events

Ehow Concept/Term Details Box

[Save H Cancel]

L.

This panel uses standard Java Swing components for the GUI and will not be described further
here, but the code to load and unload the JcheckBox elements from and to the configuration file
is shown below. Access to the configuration object is provided via the DTSModuleConfig
object passed in the DTSMonitorCfgPanel constructor (see section above). Note that the
defaults used in the boolean property getters should be the same as those in the
DTSMonitorPanel event handling code to avoid inconsistent behavior.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 52

DTS 4: Editor Module Guide

Configuration Management Code

/**
* Load the JCheckBoxes from the configuration file
* Default is all true

private void loadFromConfig() {

}

connectBox.setSelected (config.getBooleanProperty (

DTSMonitor.CONNECT EVENTS, true));

dataBox.setSelected (config.getBooleanProperty (

DTSMonitor.DATA EVENTS, true));

dndBox.setSelected(config.getBooleanProperty (

DTSMonitor.DND EVENTS, true));

moduleBox.setSelected(config.getBooleanProperty (

DTSMonitor.MODULE EVENTS, true));

detailBox.setSelected (config.getBooleanProperty (

DTSMonitor.DETAIL POPUP, true));

/** Unload the JCheckBoxes into the configuration file

* Return success flag

private boolean saveToConfig() {

config.storeBooleanProperty (

DTSMonitor.CONNECT EVENTS, connectBox.isSelected());

config.storeBooleanProperty (

DTSMonitor.DATA EVENTS, dataBox.isSelected());

config.storeBooleanProperty (

DTSMonitor.DND EVENTS, dndBox.isSelected());

config.storeBooleanProperty (

DTSMonitor.MODULE EVENTS, moduleBox.isSelected()):;

config.storeBooleanProperty (

DTSMonitor.DETAIL POPUP, detailBox.isSelected());

try {

config.saveProperties () ;

return true;

catch (Exception e) {

String err = "Unable to save DTSMonitor congiguration.";
Categories.uiView() .error (err, e);
moduleMgr.showErrorMessage (err) ;

return false;

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 53

DTS 4: Editor Module Guide

I. Converting Plug-in Modules

I.1 Converting a Pre-V4 Plug-in

The process to convert a pre-V4 plug-in module to a V4.3 Module is straightforward. Simply
perform the following steps in the Module’s base class:

1.

Replace the previous initModule method with
initModule (DTSEditorModuleMgr mgr, UsageType usage).

Add the getModuleName (), getModuleVersion (), and
getComponentShortName (String name) methods.

Add the getModuleComponent (String compName, HashMap<String,String>
options) method if a Layout component can be specified or the
DTSEditorModuleMgr.showModuleComponent () method is used.

Add the getModuleMenuItems (String menuName) method.

See the following sections for additional, version-specific, steps.

1.2 Converting to V4.3

V4.3 added a number of new DTSEditorModule methods to support Layout editors and
simplify management of menu and toolbar items. None of these additions are required, all
operations are backwards compatible, but review of the features is recommended to provide
more accurate representation of Module capabilities in Layout editors and elimination of
potentially redundant code.

1.

Review and add, if necessary, implementations of the five Layout information methods:
getComponentNames (), isMenuComponent (), isToolbarComponent (),
isLayoutComponent (), and hasOptions ().

Add super.initModule (mgr, usage) tothe local initModule method.

Delete any local instance variable for the Module’s DTSEditorModuleMgr and replace
references with moduleManager.

Delete any local btsConnectionListener registration in favor of that from the parent
class.

Delete any menu or toolbar item instance variables and use registerSelectItems t0
maintain item references. Review use of custom connectionOpened and
connectionClosed handlers for select items enablement versus that provided by the
parent class. See the descriptions in Getting Module Menu and Toolbar Items above for
further information.

© 2023 Apelon, Inc. Hingham Massachusetts
Page | 54

DTS 4: Editor Module Guide

J. Appendix A - DTS Editor Modules

This Appendix describes the Modules provided in the standard DTS Editor distribution.

Drag and Drop (DnD) support, and Module options.

The descriptions include details on access options, events

A set of operations (Connect,
Disconnect, and Connect
Parameters) for handling

two toolbar items
(Connect and
Disconnect).
Connect

DTSConnectionEvent

S

Module Name Short Access Events DnD Capability Options
Name
DTSAbout: About Menu item and None None None
A panel that displays floating panel
information about the DTS
Editor.
DTSAssociation: Associations | Menu item, toolbar | Fires DTS Drag and Drop is supported in None
A panel for creating and editing item, floating panel | ConceptEvents From Concept/Termand
DTS Associations. and layout panel To Concept/Term combos.
Drop of Associations,
Synonyms and Roles are also
supported (dropped value is the
Target).
DTSAuthority: Authorities Menu item, None Drag of Authorities from edit None
A panel for creating and editing floating panel and panel is supported.
DTS Authorities. layout panel
DTSClassify: Classify Menu item, toolbar | None Drag of Concepts from error None
A panel for performing item and floating tabs is supported.
classification of panel.
OntylogExtension Namespaces.
DTSClipboard: Clipboard Menu item and None None None
A panel for modifying the floating panel.
“Cut” string value for DTS
objects.
DTSConfiguration: Configuration | Menu item and None None None
A panel for viewing and setting floating panel
DTS Editor configuration
options
DTSConnect: Connect Three menu items, | Fires None None

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 55

DTS 4: Editor Module Guide

connection to and
disconnection from a DTS
Knowledgebase.

Parameters
floating panels.

DTSDetail: Detail Menu item, toolbar | Responds to incoming Loads the associated tab panel The following options
A panel for displaying the item, floating panel | Concept/Term on drop of Concepts, Terms, are supported:
details for DTS Concepts and and layout panel TRANSFER EVENTs and | Namespaces, Authorities and do - display-only
Terms. loads the panel with the Subsets. Drops of Synonyms, cn - Concept tab
Concept/Term if the Roles and Associations load the | tm — Term tab
event’s Target IID is the associated target ns — Namespace tab
11D of the DTSDetail Term/Concept. Copy (Ctrl) au — Authority tab
instance. drop of Synonyms, Properties, | sb — Subset tab
Roles, and Associations, adds a | pos:t — tabs on top
copy of the attribute to the (default)
focus as permissible. Drag pos:r — tabs on right
supported from focus Concept, | pos:b — tabs on bottom
Term, Namespace, Authority, pos:| —tabs on left
and Subset as well as
Synonyms, Properties, Roles
and Associations.
DTSExit: Exit None Firesan EXIT EVENT on | None None
Executes an exit operation from selection
the DTS Editor application.
DTSHelp: Help A menu item and None None None
A panel that displays the DTS floating panel
Editor help topics.
DTSLayout: Layout Two menu items, None None None
A panel for editing and and a floating panel
selecting Layouts.
DTSLocalNamespace: Local Menu item, toolbar | Fires CURRENT LOCAL | None None
A panel that permits selection Namespace item and floating NAMESPACE EVENT
of the Current Local panel
Namespace.
DTSModuleManager: Module Menu item and None None None
A panel for adding, updating Manager floating panel
and deleting Modules.
DTSMonitor: Monitor Menu item, toolbar | On receipt of an object Drop of all objects is supported. | None

A demonstration panel that
displays DTSEditor events.

item, floating panel
and layout panel

drop in the Module, fires a
TRANSFER EVENT

to a Module-subordinate
Detail Panel if so enabled

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 56

DTS 4: Editor Module Guide

in the DTSMonitor
configuration file.
DTSNamespace: Namespaces | Two menu items, Fires DTS Drag of Namespaces from edit | None
A panel for creating and editing two floating panels | NamespaceEvents panel is supported.
of Namespaces, including and one layout
Namespace and Version panel
Properties. (NamespaceEdi
tor)
DTSNotificationsConfig: Options One menu item and | None None None
A panel for configuring server one floating panel
(Pub/Sub) notifications.
DTSPreference: Preference Menus Items Preference Menu Items None
A set of menu items for
configuring/resetting DTS
Editor panel preferences.
DTSProperty: Properties Menu item, toolbar | Fires DTS Drag and Drop supported by None
A panel for creating and editing item, floating panel | ConceptEvents Concept/Term combo. Drop
Properties. and layout panel of Associations, Synonyms, and
Roles are also supported
(dropped value is the Target).
DTSSearch: Search Menu item, toolbar | Fires TRANSFER EVENT | Drag and Drop supported by None
A panel for searching the DTS item, floating panel | on concept selection if the | Concept/Term combo. Drop
Knowledgebase. and layout panel Click to Edit option is of Associations, Synonyms, and
enabled. Roles are also supported
(dropped value is the Target).
Drag supported from any
Concept/Term in the results
window.
DTSStatus: Status A layout panel. Listens for the None None
The information panel typically TRANSFER EVENT,
displayed at the bottom of the CURRENT LOCAL NAME
DTS Editor. SPACE, and
STATUS_EVENT events
and displays event content.
DTSSubset: Subset Three menu items, | Fires DTS Drag of Subsets from edit panel | None

Panels for creating, editing and
comparing subsets.

one toolbar item,
three floating
panels and two
layout panels
(SubsetEditor
and

SubsetEvents.

is supported.

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 57

DTS 4: Editor Module Guide

A panel that displays
expandable tree views of a
focus Concept’s parents and
children.

item, floating panel
and layout panel

TRANSFER EVENT on
selection if the Click to
Edit option is enabled.
Responds to incoming
Concept

Focus Concept combo and
both tree views: effect is to set
the Focus Concept. Drop of
Associations and Roles are also
supported (dropped value is the

SubsetCompare
).
DTSSynonym: Synonyms Menu item, toolbar | Fires DTS Drag and Drop is supported by | None
A panel for creating and editing item, floating panel | ConceptEvents. Concept and Term combos.
Synonyms. and layout panel Drop of Associations,
Synonyms, and Roles are also
supported (dropped value is the
Target).
DTSTree: Tree A menu item, Firesa Drag and Drop is supported by | None
A panel that displays toolbar item, Namespace/Concept the Focus Concept combo.
Namespaces and Namespace floating panel and TRANSFER EVENT oOn Drop of Associations and Roles
trees. layout panel selection if the Click to are also supported (dropped
Edit option is enabled. value is the Target). Drop into
Responds to incoming the tree window loads tree for
Concept Concept. Drag supported from
TRANSFER EVENTsand | any Concept in tree window.
loads the tree with the Drag supported from any
Concept if the event’s Namespace or Concept in tree
Target 11D is the 11D of the | window.
DTSTree instance.
DTSTypes: Types Menu item, Fires DTS None None
A panel for creating and editing floating panel and | KBTypeEvents.
Attribute Types. layout panel
DTSUserManager: UserManager | Menu item and None None None
A panel that supports creation floating panel.
and editing of DTS Roles and
assignment to Users.
DTSVersion: Version Two menu items, None Drop is supported by Concept None
Panels for comparing Concept two floating and combos in both panels.
Versions and viewing Concept two layout panels
History. (ConceptCompa
re and
SubsetCompare
).
DTSWalker: Walker Menu item, toolbar | Fires a Concept Drop is supported by the None

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 58

DTS 4: Editor Module Guide

TRANSFER EVENTS and
loads the focus concept
with the Concept if the
event’s Target IID is the
11D of the DTSWalker
instance.

Target). Drag supported from
the Focus Concept
combo and any Concept in the
tree windows.

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 59

Apelon Distributed Terminology System (DTS) — DTS Editor Module Guide

K. Appendix B - Standard DTS Editor Layout File

<?xml version="1.0" encoding="UTF-8"?>
<!-- Layout V2 Default DTS Layout saved by dtsadmin on 12 Apr 2015
14:37:20 -
->
<Layout EnablePlugins="true" Description="Apelon Standard Layout"
width="0"
Height="0" > <MenuBar>
<Menu Command="file" Mnemonic="f" Name="File">
<Menultem ModuleName="DTSConnect"/>
<Separator/>
<SelectItem ModuleName="DTSExit"/>
</Menu>
<Menu Command="tools" Mnemonic="t" Name="Tools">
<SelectItem ModuleName="DTSTree"/>
<SelectItem ModuleName="DTSSearch"/>
<SelectItem ModuleName="DTSWalker"/>
<Separator/>
<SelectItem ModuleName="DTSDetail"/>
<SelectItem ModuleName="DTSAssociation"/>
<SelectItem ModuleName="DTSProperty"/>
<SelectItem ModuleName="DTSSynonym" />
<Separator/>
<SelectItem ModuleName="DTSTypes"/>
<Separator/>
<SelectItem ModuleName="DTSNamespace"/>
<SelectItem ModuleName="DTSSubset"/>
<SelectItem ModuleName="DTSAuthority"/>
<Separator/>
<SelectItem ModuleName="DTSClassify"/>
<SelectItem ModuleName="DTSVersion"/>
</Menu>
<Menu Command="options" Mnemonic="o" Name="Options">
<SelectItem ModuleName="DTSClipboard" />
<SelectItem ModuleName="DTSConfiguration"/>
<SelectItem ModuleName="DTSLayout" />
<SelectItem ModuleName="DTSLocalNamespace"/>
<SelectItem ModuleName="DTSModuleManager"/>
<SelectItem ModuleName="DTSPreference"/>
<SelectItem ModuleName="DTSUserManager"/>
</Menu>
<Menu Command="help" Mnemonic="h" Name="Help">
<SelectItem ModuleName="DTSHelp"/>
<Separator/>
<SelectItem ModuleName="DTSAbout"/>
</Menu>
</MenuBar>
<ToolBar>

APEIOH ©1999-2021 Apelon, Inc. All Rights Reserved.

60

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.5.2/docs/com/apelon/apps/dts/editor/modules/DTSModuleConfig.html
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.5.2/javadoc/com/apelon/beans/dts/plugin/transferable/AbstractTransferable.html

Apelon Distributed Terminology System (DTS) — DTS Editor Module Guide

<SelectItem ModuleName="DTSConnect"/>
<Separator/>

<SelectItem ModuleName="DTSTree"/>
<SelectItem ModuleName="DTSSearch"/>
<SelectItem ModuleName="DTSWalker"/>
<Separator/>

<SelectItem ModuleName="DTSLocalNamespace"/>
<SelectItem ModuleName="DTSClassify” />
<Separator/>

<SelectItem ModuleName="DTSDetail"/>
<SelectItem ModuleName="DTSAssociation"/>
<SelectItem ModuleName="DTSProperty"/>
<SelectItem ModuleName="DTSSynonym" />

<Separator/>

<SelectItem ModuleName="DTSSubset"/>

<Separator/>

<SelectItem ModuleName="DTSHelp"/>
</ToolBar>

<PanellLayout continuousLayout="true">
<MultiPanel Type="v" >
<MultiPanel Type="h" >
<TabPanel Placement="t" >

<Tab >

<Panel ModuleName="DTSTree" TargetIID="detail" />
</Tab>
<Tab >

<Panel ModuleName="DTSWalker" TargetIID="detail"
</Tab>
<Tab >

<Panel ModuleName="DTSSearch" TargetIID="detail"
</Tab>

</TabPanel>
<Divider />
<TabPanel Placement="t" >

<Tab Label="Details" >
<Panel ModuleName="DTSDetail" IID="detail" />
</Tab>

</TabPanel>
</MultiPanel>
<Panel ModuleName="DTSStatus" />
</MultiPanel> </Panellayout>

</Layout>

/>

/>

©1999-2021 Apelon, Inc. All Rights Reserved.

61

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

